Understanding climate change impacts on ozone concentrations in Delaware

Joseph F. Brodie

<u>Cristina L. Archer</u>

Sara A. Rauscher

College of Earth, Ocean, and Environment
University of Delaware

Delaware Climate + Health Conference, DNREC, Dover (DE), 6 June 2017

How do we estimate the expected changes in frequency of high-ozone episodes in Delaware?

- 1. Link synoptic types and high-ozone (HO) days based on observations;
- 2. Use selected climate models to calculate past and future frequency of HO synoptic types;
- 3. Focus on two future scenarios:
 - Business-as-usual;
 - Moderately optimistic (~2015 Paris agreement).

Ozone stations in Delaware

- 10 monitoring stations, 7 for <u>ozone</u>;
- Records dating back to 1981;
- Several stations were suspended or relocated.

	SO ₂	NO ₂	со	O ₃	PM ₁₀	PM _{2.5}	Lead	Wind
Brandywine				х				х
Bellefonte	х			х		х		
Wilmington	х	х	х	х	х	х	х	х
Newark						Х		
DE City	х		х					х
Lums Pond	х			х		х		х
Dover						х		
Killens Pond				х		х		х
Seaford				х		х		х
Lewes	х			х				х

Use AQI to identify past high-ozone (HO) days

- Classify observations according to Air Quality Index (AQI) scale for O₃;
- If at least one station exceeds the AQI of 100 (O₃ > 70 ppb, 8hr avg), classify as a "highozone day";
- Example: 4-8 August 2001.

*SHL = Significant Harm Level, 600 ppb, 2 hour avg

# Stat High Avg_			Killens	Lums	B'wine	B'fonte	Seaford	Lewes	Syn Type
4-Aug-01	0	0.000	0.050	0.051	0.061	0.049	0.046	0.044	3034
5-Aug-01	2	0.085	0.054	0.069	0.089	0.080	0.059	0.051	3032
6-Aug-01	2	0.083	0.059	0.069	0.089	0.077	0.064	0.066	3034
7-Aug-01	6	0.101	0.105	0.097	0.102	0.098	0.106	0.099	3034
8-Aug-01	6	0.094	0.097	0.098	0.095	0.090	0.096	0.086	3034

Regulation success: Ozone decreasing in frequency and intensity

Number of high-ozone days (30 years)

http://www.dnrec.delaware.gov/Air/Pages/DAQ-Annual-Reports.aspx

Concern about global warming: Ozone increases with temperature!

Synoptic typing

- Principal Component Analysis (PCA)
 of meteorological observations to
 evaluate common features of
 various synoptic weather
 conditions:
 - Temperature;
 - Dew point temperature;
 - Pressure;
 - Cloud cover;
 - Wind speed and direction.
- Data from Dan Leathers and his group in Geography:
 - Available from 1948 onward;
 - Several surface locations we use Philadelphia.

Winter:

1004: Weak Carolinas Low

1005: Weak unclosed Upper GL Low

1006: Labrador Low

1008: Cold Front Passage

1009: Strong Mid-West High

1010: Weak GL Low, Southwest Flow

1011: New England Low

1016: Southwest Flow

1019: Strong New England Coastal Low

1020: Strong Labrador Low

1031: GL Low

1032: Mid-Atlantic Coastal Low

1033: Off-shore Low w/ Mid-West High

1034: New England High 1035: Mid-Atlantic High

Spring:

2006: Mid-West High

2012: Mid-Atlantic Low

2017: Carolinas High

2018: Weak Pattern

2020: Coastal Low

2031: Upper New England Coastal Low

2032: Mid-West/GL Low

2033: Overhead High

2034: Coastal High, SSW-flow

2035: Northerly Flow

2036: Weak South Flow

2037: Southwest Flow

Summer:

3006: Hudson's Bay Low, Frontal Activity

3010: Weak Southwest Flow

3013: New England High

3020: North-Northwest Flow

3031: Off-shore High

3032: Weak Pattern

3033: New England Low

3034: Southwest Flow

3035: Overhead High

Autumn:

4003: Southwest Flow

4004: Weak Pattern

4006: Western PA High, NE-flow

4009: Cold Front Passage

4010: New England High

4012: Carolinas High, E-flow

4031: New England Low

4032: GL Low

4033: Overhead High

4034: Northwest Flow

4035: Mid-Atlantic Coastal Low

Southwest flow associated with HO days

High temperatures associated with HO days

Type 3034 dominant during HO days

Climate models are computer predictions

- Many climate models with many variants are run by many groups worldwide (CMIP5 collection);
- Here we use HadGEM2 and MIROC5 for the historical period and a future business-as-usual scenario (RCP8.5);
- Later we will add GFDL, ECHAM, CESM;
- Using multiple models adds confidence in results and allows probabilistic assessments;
- We don't expect day-to-day correspondence between models and observations or between the models;
- However, we do expect the model climate to look like the real climate on average.

Use spatial pattern correlation to identify synoptic type

90W

1014 1018

1022

120W

1006

1010

60W

Methodology to identify HO days

- Use Eastern part of the North America domain to be more DE-specific;
- No single variable gives exact distribution as observations;
- To classify a day as HO, these conditions must be satisfied:
 - Be classified as synoptic type 3034, 3006, 3010, or 3033 using SLP;
 - Mean daily temperature for DE > 25.5 °C;
 - No precipitation for DE (PR < 1.0 mm/day).
- These conditions were based on last decade.

Historical results

Slide removed, please contact authors

Historical and projected results

• Slide removed, please contact authors

Conclusions

- O₃ regulation in DE has been successful at reducing O₃ despite underlying rising temperatures due to global warming;
- Method was developed to link HO days and synoptic types for climate models;
- Number of HO days is expected to <u>increase</u> in the absence of changes in regulation;
- Future work:
 - Look at more models (GFDL, ECHAM, CESM);
 - Is high O₃ getting higher, not only more frequent?